
Customer: Tokeny, OnchainId
Date: March 21, 2023

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for
Tokeny

Approved By Marcin Ugarenko | Lead Solidity SC Auditor at Hacken OU

Type Personal Id, Access Control

Platform EVM

Language Solidity

Methodology Link

Website https://www.onchainid.com/

Changelog
19.01.2023 – Initial Review
16.02.2023 – Second Review
21.03.2023 - Third Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://docs.onchainid.com/

Table of contents
Introduction 5
Scope 5
Severity Definitions 8
Executive Summary 9
Checked Items 10
System Overview 13
Findings 15

Critical 15
C01. Data Consistency 15

High 16
H01. Denial of Service 16
H02. Requirements Violation 17
H03. Requirements Violation 17
H04. Requirements Violation 17

Medium 18
M01. Inconsistent Data - Unused Return Value 18
M02. Contradiction - Missing Validation 18
M03. Best Practice Violation - Checks-Effects-Interactions Pattern 18
M04. Unscalable Functionality - Code Duplication 19
M05. Inefficient Gas Model - Storage Abuse 19
M06. Inefficient Gas Model - Storage Abuse 20
M07. Inefficient Gas Model - Storage Abuse 20
M08. Inefficient Gas Model - Storage Abuse 20
M09. Best Practice Violation - Missing Validation 21
M10. Best Practice Violation - Missing Validation 21
M11. Unscalable Functionality 21
M12. Contradiction - NatSpec Comment Contradiction 21
M13. Best Practice Violation - Lock of Native Tokens 22
M14. Inconsistent Data - Incorrect Event Emitting Order 22
M15. Inefficient Gas Model - Storage Abuse 23

Low 23
L01. Unused Import 23
L02. Missing Zero Address Validation 23
L03. Redundant Check 24
L04. Unspecific Storage 24
L05. Unclear Error Message 24
L06. Gas Optimization in Comparison 25
L07. Style Guide Violation 25
L08. Naming Consistency 25
L09. Functions that Can Be Declared External 26
L10. Style Guide - Redundant Code 26
L11. Best Practice Violation - Shadowing State Variable 26
L12. Unfinished NatSpec 26
L13. State Variables that Could Be Declared as Immutable 27
L14. Redundant Variable 27
L15. Redundant Require Statement 27

www.hacken.io
3

Disclaimers 28

www.hacken.io
4

Introduction

Hacken OÜ (Consultant) was contracted by Tokeny (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is smart contracts in the repository:

Initial review scope
Repository https://github.com/onchain-id/solidity/tree/hacken-audit

Commit 31209d8db055025c329890da8034d7285ea923c3

Whitepaper Not Provided

Functional
Requirements

https://docs.tokeny.com/docs/general-concept

Technical
Requirements

https://docs.tokeny.com/docs/general-concept

Contracts File: ./contracts/ClaimIssuer.sol
SHA3:211e7295edfaa9c8dede830a419774b1fc2f3949566c12bca2d2229636aa71b7

File: ./contracts/factory/IdFactory.sol
SHA3:30dc5d149cba5b0d1a054c1537d4098e6ed473e90d39590042dd0ea48d34070f

File: ./contracts/factory/IIdFactory.sol
SHA3:855a27c9850e172a156dc76700073929b7268e403396bf5af95f0465ea5fb50b

File: ./contracts/Identity.sol
SHA3:5ba66dc8fd94c60e85f97b58ecbe0fc88b7f18fa9e521da63bdbf52684ba0fbb

File: ./contracts/interface/IClaimIssuer.sol
SHA3:5d67a4f2619908240ff8acb14ba7100fd895e39173856c84056ac3ff8f0aee68

File: ./contracts/interface/IERC734.sol
SHA3:3b9b805431f35e435f61c9880371c11991cff830a1b201231e337788a7982942

File: ./contracts/interface/IERC735.sol
SHA3:8e16b1642f649e0007fe5b781505655bdc26d62d7533105dcba559c089ac040b

File: ./contracts/interface/IIdentity.sol
SHA3:b53aa1d640be24bb79e7b9d71858792fbcb4f8efa96610bd19ea22edc350b933

File: ./contracts/interface/IImplementationAuthority.sol
SHA3:288f385822ca50b6a84ecdb4d9ad1562690a43c227c828db1b7f9fb1ef66699d

File: ./contracts/proxy/IdentityProxy.sol
SHA3:f7e369ccb23626cd11501522bfe6f792ce7ce7405683465d7cd93021e62e8221

File: ./contracts/proxy/ImplementationAuthority.sol
SHA3:91870097a5c6d0e9697ed2a7c06b3cb5c5ea5ec710c7d66c3a6f37a5f8c64edb

File: ./contracts/storage/Storage.sol
SHA3:58944a4bc2ebf864b55b6e607eaaf46a5069c0a960ddaa99ae17a5266f156fc8

File: ./contracts/storage/Structs.sol

www.hacken.io
5

https://github.com/onchain-id/solidity/tree/hacken-audit
https://docs.tokeny.com/docs/general-concept
https://docs.tokeny.com/docs/general-concept

SHA3:1c6dd62e547527e8045d721d96e9400ef5ff4e22fbd4b5187134c6c85c714d84

File: ./contracts/version/Version.sol
SHA3:f7e62de2220c57dc5349848dcf36da48d4d48e027c77053fbf51edbf7558bf45

Second review scope
Repository https://github.com/onchain-id/solidity/tree/5c40bc7c7b462e4a4b

ff7925925b0759f7720442

Commit 5c40bc7

Contracts File: ./contracts/ClaimIssuer.sol
SHA3:25a54aab0f388d3a978a22f0fc2aa36ad5e5adee7f39e5381215d6f9c8cb9999

File: ./contracts/factory/IdFactory.sol
SHA3:1504ffdf7299d49f689f1f40ce039e0f0cebd937b724ec5636f9d71ab5d71c8f

File: ./contracts/factory/IIdFactory.sol
SHA3:2d8713abb0679395282204b5205eae249b5b2004588ac6ab78dda513bd207a5e

File: ./contracts/Identity.sol
SHA3:b72fc074c6c9e64c435edcb1bbb67a111f117468c94e3a1dd3e5b576e639dd62

File: ./contracts/interface/IClaimIssuer.sol
SHA3:5d67a4f2619908240ff8acb14ba7100fd895e39173856c84056ac3ff8f0aee68

File: ./contracts/interface/IERC734.sol
SHA3:1de188f676b87e1d3fdfe406117bc8490c5a4c5529a1dc7a2f92b540eff44281

File: ./contracts/interface/IERC735.sol
SHA3:bed91d3ab3dad913c3665b13a5f897af0fc942e8c6b45008357aeb403c273e84

File: ./contracts/interface/IIdentity.sol
SHA3:b53aa1d640be24bb79e7b9d71858792fbcb4f8efa96610bd19ea22edc350b933

File: ./contracts/interface/IImplementationAuthority.sol
SHA3:288f385822ca50b6a84ecdb4d9ad1562690a43c227c828db1b7f9fb1ef66699d

File: ./contracts/proxy/IdentityProxy.sol
SHA3:9069478e71e058eb1bf30d34310db1d739b12adc6ddd74a8df78d033411dc255

File: ./contracts/proxy/ImplementationAuthority.sol
SHA3:b675a13d47da177bf49dbf6d6c25fca508eaab64c3cefb4aa6a0aff92f9e5e2b

File: ./contracts/storage/Storage.sol
SHA3:d5f16b2c7c6666a7eea0349d6525c995ff1399860028254a387e8d5aea297cc5

File: ./contracts/storage/Structs.sol
SHA3:1c6dd62e547527e8045d721d96e9400ef5ff4e22fbd4b5187134c6c85c714d84

File: ./contracts/version/Version.sol
SHA3:ad505d3aca038c468a75d7edd05af9e992d685f8e18cb3c5c37538c79346905c

Third review scope
Repository https://github.com/onchain-id/solidity/tree/c20c1480b5e2ad10d3

ffd23d9d760f69f1645825

Commit c20c148

www.hacken.io
6

Contracts File: ./contracts/ClaimIssuer.sol
SHA3:10c80034acc89133aefb577bf798b8206a239927acfff9036241f57f6d9ee747

File: ./contracts/factory/IdFactory.sol
SHA3:602c92087cd3591d9e7be542f13d6627b45ca415007a3094b84460ae80b73e6c

File: ./contracts/factory/IIdFactory.sol
SHA3:2d8713abb0679395282204b5205eae249b5b2004588ac6ab78dda513bd207a5e

File: ./contracts/Identity.sol
SHA3:74ea9ade0801e1da9781872a2cbcf76b527591427f0a82d6a9bf600aed5e7b0c

File: ./contracts/interface/IClaimIssuer.sol
SHA3:57d28cba48929f1495dcfef2c52da870f0868c1d38136951ae16839b05d8486c

File: ./contracts/interface/IERC734.sol
SHA3:57cafb3f58155e7fd74d0fe8ab38bf073dd7ba71430b5b214eb9db4c3e3ef771

File: ./contracts/interface/IERC735.sol
SHA3:774d17fb40f7088c6acd95aa7f43c0186c4f485794922f666e5926fba17f11c5

File: ./contracts/interface/IIdentity.sol
SHA3:b53aa1d640be24bb79e7b9d71858792fbcb4f8efa96610bd19ea22edc350b933

File: ./contracts/interface/IImplementationAuthority.sol
SHA3:288f385822ca50b6a84ecdb4d9ad1562690a43c227c828db1b7f9fb1ef66699d

File: ./contracts/proxy/IdentityProxy.sol
SHA3:e58c53e570e2eb49c9095c595484038a088b96b920731809a6afd4498b679953

File: ./contracts/proxy/ImplementationAuthority.sol
SHA3:5e1181d9fd9f776caca89a5626af592ed8cb75d0217846246262e50e941cceb5

File: ./contracts/storage/Storage.sol
SHA3:1cfa2668656be14d27347c2e68ebb195176ffec9517a9876898eea9962b8540f

File: ./contracts/storage/Structs.sol
SHA3:1c6dd62e547527e8045d721d96e9400ef5ff4e22fbd4b5187134c6c85c714d84

File: ./contracts/Test.sol
SHA3:885ad5cb350ce74476f2a4c5716494fbb8bf9df167531d9a710843b78a9fc6ff

File: ./contracts/version/Version.sol
SHA3:ad505d3aca038c468a75d7edd05af9e992d685f8e18cb3c5c37538c79346905c

www.hacken.io
7

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions.

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot have a
significant impact on execution.

www.hacken.io
8

Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 8 out of 10.

● Functional requirements are partially missed.
● NatSpec is consistent.
● There is no apparent flow of the contracts.
● Run instructions are provided.

Code quality
The total Code Quality score is 10 out of 10.

● The development environment is configured.
● Best practices are followed.

Test coverage
Test coverage of the project is 89.77% (branch coverage).

● Deployment and basic user interactions are covered with tests.

Security score
As a result of the audit, the code contains no issues. The security score
is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.4.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

19 January 2023 13 13 4 1

16 February 2023 3 4 2 1

21 March 2023 0 0 0 0

www.hacken.io
9

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing

Checked Items

We have audited the Customers' smart contracts for commonly known and more
specific vulnerabilities. Here are some items considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Not Relevant

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Passed

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Passed

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

www.hacken.io
10

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-114

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Not Relevant

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Not Relevant

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery

Passed

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
unused
variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP standards
violation EIP EIP standards should not be violated. Passed

Assets
integrity Custom Funds are protected and cannot be

withdrawn without proper permissions. Passed

User Balances
manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Not Relevant

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Not Relevant

Token Supply
manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Not Relevant

www.hacken.io
11

https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style guide
violation Custom Style guides and best practices should

be followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Not Relevant

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be 100%,
with both negative and positive cases
covered. Usage of contracts by multiple
users should be tested.

Failed

Stable Imports Custom
The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
12

System Overview

ONCHAINID is a blockchain-based identity system that identifies individuals
and organizations, allowing them to enforce compliance and access digital
assets.

ONCHAINIDs are self-sovereign identities. This means that each holder of an
identity is in control of their information and who has access to it.

Their address is a unique identifier that can safely be used by a service
provider to identify their owner, and even to sign requests such as direct
authentication on a website.

The project aims to achieve a means of decentralized authentication that is
in control of the identity holders themselves.

The project consists of standards for claim holders and key holders, which
are then combined to create identities.

Information about the contracts in the scope;
● Identity.sol: The contract that implements the IERC734 and IERC735

standards and combines them to create an identity which can
add/remove keys and claims.

● IdFactory.sol: The contract that handles the deployment of identity
proxies.

● ClaimIssuer.sol: The contract that represents the claim issuers by
extending Identity.sol.

● IdentityProxy.sol: Proxy contract for upgradeability in Identity.
● Structs.sol: The contract that holds struct variables for

upgradeability.
● ImplementationAuthority.sol: The contract responsible for storing and

updating the implementation logic of upgradeable contracts.
● Storage.sol: The contract that holds variables for upgradeability.
● IIdFactory.sol: Interface for IdFactory.
● Version.sol: The contract to hold the version of the Identity

contract.
● IERC734.sol: Key holder standard interface.
● IERC735.sol: Claim holder standard interface.
● IClaimIssuer.sol: Interface for ClaimIssuer.
● IIdentity.sol: Interface for Identity.
● IImplementationAuthority.sol: Interface for ImplementationAuthority.

Privileged roles
● Owner: The owner of the system. Responsible for the upgrading of the

contracts.
● Claim Issuer: Responsible for issuing identity holders’ claims on

their identity.

www.hacken.io
13

● Identity Owner: The OnchainId identities user.

Risks
● The upgradeable nature of the contracts puts the implementation at

risk in case of logic upgrade.
● The EIP-734 and EIP-735 were closed and not integrated into the

Ethereum standards. The project is building upon those standards.
● The Identity.sol contract tries to implement the old EIP-725

standard, which was updated to the 725v2.

www.hacken.io
14

Findings

Critical

C01. Data Consistency

In Identity.execute(), the input _value is not checked so that it is
equal to the msg.value. The documentation does not specify this, but
the function behavior suggests this.

This may lead to unwanted behavior and leave excess native tokens
stuck in the Identity contract if a users parameter _value is less
than their msg.value. Additionally, a user can use an input _value
higher than their msg.value, resulting in a loss of funds of the
Identity contract when the transaction will be approved and executed.

Path:
./contracts/Identity.sol: execute(), approve()

Recommendation: Either check the parameter _value so that it is equal
to msg.value or pass msg.value directly into
_executions[_executionNonce].value.

Status: Mitigated (

commit 5c40bc7, Customer notice:

“The execute and approve method should be able to utilize any native
token stored at the identity contract address. The ability to call
execute with a value allows to retrieve this value from the contract,
or to use it when calling another contract without using the funds of
the sender of the transaction (this is by extension a way to retrieve
any native token “stuck” in the identity contract). This is expected
behavior.”

However, this may still cause a vulnerability, as stated in the
issue, which leads to the loss of funds for the Identity contract, as
there is no restriction on the execute() function caller.

An attacker can create an unlimited number of execute() transactions
with malicious data, for example, to transfer stored funds to the
attacker's address.

All those transactions will be shown in the frontend application,
"Dapp/Mobile app", and the identity owner or key signer can be
tricked into approving such transactions. In short, the end user can
be spammed with requests.

commit c20c148, Customer notice:

“The ability for all to call the `execute()` method is a core
functionality, an attacker could indeed send a lot of `execute`
request to the Identity contract (paying gas for this, which prevents
a complete DDoS attack on the contract), but such abnormal requests
could be interpreted as “spam” by a dApp and not display them in the

www.hacken.io
15

same display units as more legitimate requests (e.g. in a “spam”
tab). Another filtering would be that execute requests for unknown
addresses are put by the dApp in this “spam” folder. Tricking the
identity owner to approve an execution request is an attack vector
that does not only apply to native tokens stored on the identity
contract, but also to key managements, claim addition/removal and by
extension all operations on the Identity Contract and contracts the
identity could interact with.

We could mitigate slightly the risk of approving such a trick
execution request by requiring the approve method to receive all
parameters of the execution request (id, value, to, and data), so
that whenever an identity owner signs an approval transaction they
could verify the data and the called contract/recipient address by
themselves.

We could also have some sort of list of allowed addresses to call
execute with certain rules. For instance, only approved addresses
could transfer value or interact with keys management methods on the
identity. This would mitigate the risk for the identity owned native
currency and identity keys, but it won’t prevent transactions to
other contracts without value (and thus transferring non-permissioned
tokens).“

We accept the explanation.)

High

H01. Denial of Service

In an edge case scenario, an address with a Key of purpose 2 can run
the approve function with input _id >= _executionNonce and _approve =
true. The code will execute with success and
_executions[_id].executed = true will be set.

When the execute() function hits the _executionNonce, it will have
status executed and will revert. Blocking any access to execute().

The require(!_executions[_executionNonce].executed, "Already
executed") check should never be in the execute() function, but
rather in approve() together with additional check that prevents
usage of _id > _executionNonce

Path:
./contracts/Identity.sol: execute(), approve()

Recommendation: Re-examine the flow and interactions of the execute()
and approve() functions, and rewrite the logic to prevent the
possibility of a Denial of Service scenario.

Status: Fixed (Revised commit: 5c40bc7)

www.hacken.io
16

H02. Requirements Violation

The implementation of the approve() function in the Identity.sol
contract violates the NatSpec specification from the IERC734.sol
file.

Triggers Event: `Approved`, `Executed`

This SHOULD require n of m approvals of keys purpose 1, if the _to of
the execution is the identity contract itself, to successfully
approve an execution.

Violation of requirements can lead to incorrect assumptions about the
functionality of the contract.

Paths:
./contracts/interface/IERC734.sol : ExecutionFailed, approve()
./contracts/Identity.sol: approve()

Recommendation: Update the documentation or implement
functionalities.

Status: Fixed (Revised commit: c20c148)

H03. Requirements Violation

In the IERC734 interface file, functions are described and events are
presented that are not implemented or used in the Identity contract
implementation.

Emitted when the list of required keys to perform an action was
updated.

event KeysRequiredChanged(uint256 purpose, uint256 number);

Violation of requirements can lead to incorrect assumptions about the
functionality of the contract.

Path:
./contracts/interface/IERC734.sol : KeysRequiredChanged

Recommendation: Update the documentation or implement
functionalities.

Status: Fixed (Revised commit: 5c40bc7)

H04. Requirements Violation

In the IERC735 interface file, a functionality for claim requests is
described, along with the event declaration ClaimRequested.

There is no such functionality, nor is the ClaimRequested ever used.

Violation of requirements can lead to incorrect assumptions about the
functionality of the contract.

Path:
./contracts/interface/IERC735.sol : ClaimRequested

www.hacken.io
17

Recommendation: Update the documentation or implement
functionalities.

Status: Fixed (Revised commit: c20c148)

Medium

M01. Inconsistent Data - Unused Return Value

In Identity.execute(), calls to approve() are made, but the return
value of the boolean is not checked or propagated to the caller.

In the case of an immediate execution of the call, if the msg.sender
is a Level 1 or Level 2 key, the return information from the
approve() function is lost and can only be accessed by reading the
emitted event off-chain.

Path:
./contracts/Identity.sol: execute(), approve()

Recommendation: Consider adding a check for the return value of calls
to approve() and propagating that return value within the execute()
function.

Status: Mitigated (with Customer notice stated as:

“We don’t consider useful to use the return boolean value of approve
in the execute function, from our perspective it doesn’t add anything
of interest to the function as the execution success or failure is
handled by the approve function itself and events are emitted in both
scenarios.”)

M02. Contradiction - Missing Validation

In the approve() function, any executed 'Execution' can be replayed
without validation to prevent it.

This can lead to unexpected values being processed by the contract.

Path:
./contracts/Identity.sol: approve()

Recommendation: Implement validation to prevent the execution of
already executed 'Executions'.

Status: Fixed (Revised commit: c20c148)

M03. Best Practice Violation - Checks-Effects-Interactions Pattern

In the Identity.sol contract, during the function executions, some
state variables are updated after the external calls, which is
against best practices.

This may lead to confusion, reentrancies, race conditions, and denial
of service vulnerabilities during the implementation of new
functionality.

www.hacken.io
18

● In the approve() function of the Identity.sol contract,
_executions[_id].to.call call is made before updating
_executions[_id].executed = true.

● In the execute() function of the Identity.sol contract,
approve() external call is made before doing state changes on
_executionNonce.

Path:
./contracts/Identity.sol : approve(), execute()

Recommendation: Common best practices should be followed, functions
should be implemented according to the Checks-Effects-Interactions
pattern. If not possible, the nonReentrant modifier can be used.

● In approve() of Identity.sol, _executions[_id].to.call should
not be made before updating _executions[_id].executed = true.

● In the execute() function of the Identity.sol contract,
approve() should be called after doing state changes on
_executionNonce.

Status: Fixed (Revised commit: 5c40bc7)

M04. Unscalable Functionality - Code Duplication

In Identity.sol and ClaimIssuer.sol, several functions have the
following check, instead of using a modifier:

if (msg.sender != address(this)) {
require(keyHasPurpose(keccak256(abi.encode(msg.sender)),1),

"Permissions: Sender does not have management key");
}

Duplicated logic takes more Gas for deployment and makes further
development difficult. A modifier should be used, with an argument
for the key number that will be checked.

Paths:
./contracts/Identity.sol: addKey(), removeKey(), addClaim(),
removeClaim()
./contracts/ClaimIssuer.sol: revokeClaim()

Recommendation: Consider using a modifier for these checks.

Status: Fixed (Revised commit: 5c40bc7)

M05. Inefficient Gas Model - Storage Abuse

In several cases, storage variables are read/written many times,
although memory variables can be used.

In Identity.addKey(), _keys[_key].purposes is computed twice at every
loop, to check the length and to compute purpose. Instead of this,
the purposes array should be saved as a memory variable and used
inside the loop.

www.hacken.io
19

Path:
./contracts/Identity.sol: addKey()

Recommendation: Use memory variables instead of storage when
repeating operations.

Status: Fixed (Revised commit: 5c40bc7)

M06. Inefficient Gas Model - Storage Abuse

In several cases, storage variables are read/written many times,
although memory variables can be used.

In Identity.execute(), storage variable _executionNonce is read
repeatedly. Instead, create a new variable (e.g. execNonce) and use
it over the whole function. Update the storage variable
_executionNonce at the end of the function.

Path:
./contracts/Identity.sol: execute()

Recommendation: Use memory variables instead of storage when
repeating operations.

Status: Fixed (Revised commit: 5c40bc7)

M07. Inefficient Gas Model - Storage Abuse

In several cases, storage variables are read/written many times,
although memory variables can be used.

In Identity.removeKey(), the storage variables _keys[_key].purposes
and _keysByPurpose[_purpose] are used repeatedly. Use a memory
variable instead.

Path:
./contracts/Identity.sol: removeKey()

Recommendation: Use memory variables instead of storage when
repeating operations.

Status: Fixed (Revised commit: c20c148)

M08. Inefficient Gas Model - Storage Abuse

In several cases, storage variables are read/written many times,
although memory variables can be used.

In Identity.removeClaim(), the storage variable
_claims[_claimId].topic is accessed many times. Use a memory variable
instead.

Path:
./contracts/Identity.sol: removeClaim()

Recommendation: Use memory variables instead of storage when
repeating operations.

Status: Fixed (Revised commit: 5c40bc7)

www.hacken.io
20

M09. Best Practice Violation - Missing Validation

In Identity.removeKey(), a while loop checks whether
_keysByPurpose[_purpose][keyIndex] != _key. Consider adding a check
so that the loop stops if the whole array is checked, as it is done
in while (_keys[_key].purposes[purposeIndex] != _purpose).

Path:
./contracts/Identity.sol: removeKey()

Recommendation: Add a check to make sure the loop stops at the end of
the array.

Status: Fixed (Revised commit: 5c40bc7)

M10. Best Practice Violation - Missing Validation

In Identity.removeClaim(), a while loop checks whether
_claimsByTopic[_claims[_claimId].topic][claimIndex] != _claimId.
Consider adding a check so that the loop stops if the whole array is
checked, as it is done in while (_keys[_key].purposes[purposeIndex]
!= _purpose).

Path:
./contracts/Identity.sol: removeClaim()

Recommendation: Add a check to make sure the loop stops at the end of
the array.

Status: Fixed (Revised commit: 5c40bc7)

M11. Unscalable Functionality

In Identity.sol.constructor(), the state variable _canInteract in
Storage.sol should be set to false by default (other functions must
adapt).

Going back to Identity.sol.constructor(): _canInteract = !_isLibrary
is unnecessary and the condition statement can be changed to
if(!_isLibrary).

When __Identity_init() is called, the state variable _canInteract
will be set to true.

Path:
./contracts/proxy/ImplementationAuthority.sol :
updateImplementation()

Recommendation: Update the code to an optimized structure.

Status: Fixed (Revised commit: 5c40bc7)

M12. Contradiction - NatSpec Comment Contradiction

In the Identity.sol contracts addKey() function, documentation states
that the uint256 _purpose parameter is actually a type uint256[].

Path:
./contracts/Identity.sol : addKey()

www.hacken.io
21

Recommendation: Either correct documentation or the code.

Status: Fixed (Revised commit: 5c40bc7)

M13. Best Practice Violation - Lock of Native Tokens

In the execute() function, native tokens are accepted as part of the
call. If the 'Execution' is rejected during approval, the funds will
not be used and will be locked inside the contract.

Path:
./contracts/Identity.sol: approve()

Recommendation: Consider implementing functionality that provides
refunds in case of rejection.

Status: Mitigated (with Customer notice stated as:

“Tokens would still be accessible because a subsequent Execute
Request could be emitted to transfer those native tokens to another
address (including the original sender address). The possibility to
refund native currency to the original sender should be discussed.
(As of now, we don’t have a method to permanently decline an
Execution Request). We could add a `execution.rejected` property, set
to true whenever an execution is explicitly rejected, and prevent any
other call to approve for this execution.”

We agree that in the current form of the contracts, this statement is
correct.)

M14. Inconsistent Data - Incorrect Event Emitting Order

The order of events triggered during the execution of the execute()
and approve() functions is incorrect.

In a situation where the sender of the execute() function is an
ACTION or MANAGEMENT key, the only event that should be triggered is
Executed.

The ExecutionRequested event should only be triggered in situations
when the sender of the execute() function is not an ACTION or
MANAGEMENT key, in order to inform the off-chain system about pending
executions.

The Approved event should only be triggered when the approve()
function is called directly by an account with an ACTION or
MANAGEMENT key, and not from the execute() function during the
instant execution flow. The Executed event can be triggered after the
Approved in a situation when execution was approved and it was a
successful execution.

The ExecutionFailed event will never be emitted, as the transaction
will always revert in the block of code where the event is triggered,
making this event redundant.

www.hacken.io
22

Path:
./contracts/Identity.sol: : execute(), approve()

Recommendation: Re-examine how the events should be triggered for
each of the execute() and approve() functions' possible flows.

Status: Fixed (Revised commit: c20c148)

M15. Inefficient Gas Model - Storage Abuse

In the Identity.sol contracts removeClaim() function, the storage
variable _climsByTopic[_topic].length is being accessed multiple
times in the following cases:

while (_claimsByTopic[_topic][claimIndex] != _claimId) {
claimIndex++;

if (claimIndex >= _claimsByTopic[_topic].length) {
break;

}
}

_claimsByTopic[_topic][claimIndex] =
_claimsByTopic[_topic][_claimsByTopic[_topic].length - 1];

Assigning memory variables to read-only operations would save gas and
increase readability.

Path: ./contracts/Identity.sol : removeClaim()

Recommendation: Use memory variables instead of storage when
repeating operations.

Status: Fixed (Revised commit: c20c148)

Low

L01. Unused Import

In IdFactory.sol, the file IImplementationAuthority.sol is imported
but never used. Unused imports should be removed from the contracts.
Unused imports are allowed in Solidity and do not pose a direct
security issue. It is best practice to avoid them as they can
decrease readability.

Path:
./contracts/factory/IdFactory.sol

Recommendation: Remove unused imports.

Status: Fixed (Revised commit: 5c40bc7)

L02. Missing Zero Address Validation

Address parameters are being used without checking against the
possibility of 0x0. This can lead to unwanted external calls to 0x0.

www.hacken.io
23

Paths:
./contracts/IdFactory.sol : constructor(), __Identity_init()
./contracts/proxy/IdentityProxy.sol : constructor()
./contracts/proxy/ImplementationAuthority.sol : constructor(),
updateImplementation()

Recommendation: Add zero address check.

Status: Fixed (Revised commit: 5c40bc7)

L03. Redundant Check

In IdFactory.removeTokenFactory(), zero address is checked with
require(_factory != address(0), "invalid argument - zero address").
However, this check is unnecessary since the next requirement is
checking if the address is a Factory, which will exclude 0x0.

In Identity.removeKey(), there is a check for
_keys[_key].purposes.length > 0. However, this requirement can be
removed since it is already contained in _keys[_key].key == _key,
because all keys are added with at least one purpose.

Paths:
./contracts/factory/IdFactory.sol : removeTokenFactory()
./contracts/Identity.sol : removeKey()

Recommendation: Remove redundant checks.

Status: Fixed (Revised commit: 5c40bc7)

L04. Unspecific Storage

In IdFactory.createTokenIdentity(), new token identities are linked
to token addresses but stored as regular wallets in
_userIdentity[_token] = identity and _wallets[identity].push(_token).
Using different storage variables is recommended to keep things
specific.

Path:
./contracts/factory/IdFactory.sol: createTokenIdentity()

Recommendation: Add specific storage variables for wallets or tokens.

Status: Fixed (Revised commit: 5c40bc7)

L05. Unclear Error Message

In IdFactory.linkWallet(), the error message in
require(_wallets[identity].length <= 100, "not more than 100 _wallets
linked") is not clear. Add the word “allowed” or similar to make it
better.

Path:
./contracts/factory/IdFactory.sol : linkWallet()

Recommendation: Rewrite the error message.

Status: Fixed (Revised commit: 5c40bc7)

www.hacken.io
24

L06. Gas Optimization in Comparison

In IdFactory.linkWallet(), in require(_wallets[identity].length <=
100, "not more than 100 _wallets linked"), the Gas cost can be
decreased by using <101 instead.

In Identity.removeKey(), the condition if(purposeIndex >=
_keys[_key].purposes.length) can be optimized to if(purposeIndex =
_keys[_key].purposes.length). In addition, when the condition is met,
instead of a break and the following require(purposeIndex <
_keys[_key].purposes.length), a revert with the error message
"NonExisting: Key doesn't have such purpose" can save some extra Gas.

Path:
./contracts/factory/IdFactory.sol: linkWallet(), removeKey()

Recommendation: Update to the cheaper version of code.

Status: Fixed (Revised commit: 5c40bc7)

L07. Style Guide Violation

In IdFactory and IIdFactory, there is a blank space before the
brackets in isTokenFactory (), addTokenFactory() and
removeTokenFactory() functions.

Paths:
./contracts/IdFactory.sol: isTokenFactory(), addTokenFactory(),
removeTokenFactory()
./contracts/IIdFactory.sol: isTokenFactory(), addTokenFactory(),
removeTokenFactory()

Recommendation: Remove the blank space.

Status: Fixed (Revised commit: 5c40bc7)

L08. Naming Consistency

The naming of variables does not follow consistency. In some cases,
_mixedCase is used, while others are mixedCase. This can lead to
confusion since the different naming leads to assuming different
properties.

All state variables are named in _mixedCase, with the exception of
revokedClaims in ClaimIssuer.sol.

Input variables in different functions use _mixedCase or mixedCase
arbitrarily.

Path:
./contracts/ClaimIssuer.sol: revokedClaims

Recommendation: Use the same naming pattern for all variables or
document why they need to be different.

Status: Mitigated (Internal variables are named in _mixedCase while
public variables are named in mixedCase.)

www.hacken.io
25

L09. Functions that Can Be Declared External

In order to save Gas, public functions that are never called in the
contract should be declared as external.

Paths:
./contracts/proxy/ImplementationAuthority.sol :
updateImplementation()
./contracts/Identity.sol : initialize(), execute(),
getClaimIdsByTopic(), getKey(), getKeyPurposes(), getKeyByPurpose()
./contracts/version/Version.sol : version()

Recommendation: Use the external attribute for functions that are
never called from the contract.

Status: Fixed (Revised commit: 5c40bc7)

L10. Style Guide - Redundant Code

In the Identity.sol contract’s addClaim() function, there are two big
blocks of code for _claims[claimId] that are repeated in the
conditional if/else statements unnecessarily. This leads to higher
Gas cost and decreases readability.

Path:
./contracts/Identity.sol : addClaim()

Recommendation: Rewrite the if/else statement so that code is not
duplicated.

Status: Fixed
(Revised commit: c20c1480b5e2ad10d3ffd23d9d760f69f1645825)

L11. Best Practice Violation - Shadowing State Variable

In the IdFactory.sol contracts createTokenIdentity() function, the
_owner variable shadows’ existing variable Ownable._owner.

This may lead to undesired behavior.

Path:
./contracts/factory/IdFactory.sol : createTokenIdentity()

Recommendation: Consider using a different naming for the variable.

Status: Fixed (Revised commit: 5c40bc7)

L12. Unfinished NatSpec

NatSpec is not complete - some Smart Contract members are
undocumented.

Paths:
./contracts/Identity.sol
./contracts/factory/IdFactory.sol
./contracts/interface/IERC734.sol
./contracts/proxy/IdentityProxy.sol

www.hacken.io
26

Recommendation: Add NatSpec to undocumented members of the Smart
Contracts.

Status: Fixed (Revised commit: 5c40bc7)

L13. State Variables that Could Be Declared as Immutable

There are variables in the contract that can be declared as immutable
to save Gas.

Path:
./contracts/factory/IdFactory.sol : _implementationAuthority

Recommendation: Variables that do not change after construction
execution should be declared as immutable.

Status: Fixed (Revised commit: 5c40bc7)

L14. Redundant Variable

In the Storage.sol contract, there is a variable declaration named
_identifier which is not used anywhere.

Redundant code might decrease code readability and increase gas
consumption.

Path:
./contracts/storage/Storage.sol : _identifier

Recommendation: Remove redundant code.

Status: Fixed (Revised commit: c20c148)

L15. Redundant Require Statement

In the Identity.sol contracts execute() function, there is a
requirement check:

require(!_executions[_executionId].executed, "Already executed");

This is redundant since the _executionNonce is being incremented
after every execute() call and there is no possibility for a previous
_executionId to be processed when execute() call is made.

Path:
./contracts/Identity.sol : execute()

Recommendation: Remove redundant require statement to increase
readability and Gas efficiency.

Status: Fixed (Revised commit: c20c148)

www.hacken.io
27

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted to and reviewed, so it may not be relevant after any
modifications. Do not consider this report as a final and sufficient
assessment regarding the utility and safety of the code, bug-free status,
or any other contract statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, Consultant
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io
28

